
York University
EECS 2011Z Winter 2018 – Problem Set 3

Instructor: James Elder

This problem set will not be graded, but will help you consolidate the material from the second half of
the course and prepare for the final exam. You are free to work together on these if you prefer. I will post
the solutions by Apr 4.

1. Prove that n log n− n is Ω(n).

2. Show that n2 is Ω (n log n).

3. Algorithm A is Ω
(
n2

)
and Algorithm B is O(n log n). If (worst-case) asymptotic run time is your only

concern, which algorithm should you choose? Is this guaranteed to be the right choice?

4. State the definition of O() and use it to show that f(n) = 3n3 + 5n2 log n+ 9 cos(2πn) is O
(
n3

)
.

5. Please show the hash table that results from adding the keys below to an initially empty map using
hash function h(k) = k mod 11 and linear probing.

Keys to add (in the order given): 98, 31, 39, 21, 33, 91, 90, 34
! ! ! ! ! ! ! ! ! ! !

0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 10!
!

6. Hashing

Given input keys {71, 23, 73, 99, 44, 19, 49} and hash function h(k) = k mod 10, show the resulting hash
table based upon:

(a) Separate chaining

0 1 2 3 4 5 6 7 8 9

(b) Linear probing

0 1 2 3 4 5 6 7 8 9

(c) Double hashing with secondary hash function h′(k) = 7− k mod 7

0 1 2 3 4 5 6 7 8 9

7. Binary Search Trees
Insert, into an empty binary search tree, entries with keys 30, 40, 24, 58, 48, 26, 11, 13 (in this order).
Draw the tree after each insertion.

8. Nearest node in BST
Given a binary search tree T and a number k, the algorithm Nearest(k, v) should return the key in
the subtree of T rooted at vertex v that is closest in value to k. For example, if k = 7 and the subtree
contains keys 17, 5, 13, and 11, then the algorithm should return 5. In the event of a tie, either key
can be returned.

1

(a) Design a recursive algorithm for Nearest(k, v). Describe your algorithm using concise pseudocode.
You can assume access to an object T that refers to the tree and supports the following operations

• T.isExternal(v): Return true if v is an external node, false otherwise.

• T.left(v): return the left child vertex of v

• T.right(v): return the right child vertex of v

• key(v): return the key of vertex v

You can assume that v is a valid vertex of T . You may also assume access to a constant k∞ that
is maximally distant from all keys.

(b) What is the asymptotic running time of your algorithm for a tree with n nodes?

(c) What is the asymptotic running time of your algorithm for a tree with n nodes, if the tree is an
AVL tree?

9. AVL Trees
Insert, into an empty binary search tree, entries with keys 62, 44, 78, 17, 50, 88, 48, 54 (in this order).
Now draw the AVL tree resulting from the removal of the entry with key 62.

10. Splay Trees
Perform the following sequence of operations in an initially empty splay tree and draw the tree after
each set of operations.

(a) Insert keys 0, 2, 4, 6, 8, in this order.

(b) Search for keys 1, 3, 5, 7, in this order.

(c) Delete keys 0, 8, 2, 4, 6 in this order.

11. Comparison Sorts
Of the n! possible inputs to a given comparison-based sorting algorithm, what is the absolute maximum
number of inputs that could be sorted with just n comparisons?

12. Comparison Sorts
Give an example input list for which merge-sort and heap-sort take O(n log n) time, but for which
insertion sort takes O(n) time. What if the list is reversed?

13. Stack-Based Quicksort
Describe in pseudocode a non-recursive version of the quick-sort algorithm that explicitly uses a stack.

14. Highest Points
You are implementing an algorithm that draws part of the landscape of a 3D terrain, and you are faced
with the following problem: You are given the heights of n points of the terrain’s grid, and you need
to find the b

√
nc highest of them, returning them in descending order. Note that these heights are real

numbers, not integers.

(a) Design an algorithm that does this in O(n) time. Assume that the points are given as an array
A [1 . . . n].

Briefly describe your algorithm using concise pseudocode. Any of the algorithms we have covered
in class may be used as subroutines. Refer to them by name (do not re-describe them).

(b) Briefly state the asymptotic running time taken by each step of your algorithm, and thus show
that it is has a total running time of O(n).

(c) Provide a Θ bound on the time complexity of this problem. Briefly justify your answer.

2

15. kth-Largest Element
You are to design an efficient recursive algorithm for finding and returning the kth largest element in
an array of n elements. Here k can be any number from 1 to n. For simplicity, you can assume that
the elements are all unique.

Your recursive algorithm will have the interface kthLargestElement(A, p, q, k), where A is the array
and p and q are the upper and lower index bounds of the current search region within A. Your
algorithm will make use of the in-place partition method used in QuickSort. In particular, calling
r = partition(A, p, q) will reorganize the contents of A between indices p and q so that A[i] ≤ A[r] if
p ≤ i < r and A[i] > A[r] if r < i ≤ q, where p ≤ r ≤ q. Note that the partition function returns the
pivot index r. Your algorithm would be invoked as kthLargestElement(A, 0, n-1, k), where n is the
size of the array.

Important: 1) Do not sort the entire array. 2) You do not have to implement the partition function.

(a) (12 marks) Describe your algorithm in concise pseudo-code or in English.

(b) (3 marks) What is the worst-case asymptotic running time of your algorithm? Briefly justify your
answer.

(c) (1 mark) What is the expected asymptotic running time of your algorithm, assuming random
input? No justification required.

(d) (1 mark) For comparison, suppose you implemented an alternative algorithm that simply sorts
the input using QuickSort and then finds the kth largest element in the sorted array. What is the
expected asymptotic running time of this algorithm?

16. Linear Sorts
Given an array of n integers, each in the range

[
0, n2 − 1

]
, describe a simple method for sorting the

array in O(n) time.

17. Deleting Edges in Graphs
Let G = (V,E) be an undirected graph with vertex set {0, 1, . . . , |V | − 1} and with |E| edges. We
denote with (i, j) the edge connecting vertex i and vertex j, and with d(i) the degree of vertex i.

We define the following two operations:

deleteEdge(i, j): delete from G a given edge (i, j).

deleteIncidentEdges(i): delete from G all the d(i) edges incident on a given vertex i.

Provide a precise analysis of the time complexity of operations

deleteEdge(i,j) and deleteIncidentEdges(i) for the following two representations of graph G:

(a) Graph G is represented by a |V | × |V | boolean matrix A such that A[i, j] is true if and only if G
contains edge (i, j).

(b) Graph G is represented by |V | sequences S1, . . . , S|V |, where sequence Si = {Si(1), . . . , Si(d(i))}
contains the d(i) vertices adjacent to vertex i and is realized by means of a doubly-linked list.

18. DFS and BFS
Let G be an undirected graph whose vertices are labelled by the integers 1 through 8, and having the
following edges:

3

CSE	
 2011Z	
 2012W	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Prof.	
 J.	
 Elder	

R-­‐13.8	
 Let	
 G	
 be	
 an	
 undirected	
 graph	
 whose	
 vertices	
 are	
 labelled	
 by	
 the	
 integers	
 1	
 through	
 8,	
 and	

having	
 the	
 following	
 edges:	

	

Vertex	
 Edges	

1	
 2,	
 3,	
 4	

2	
 1,	
 3,	
 4	

3	
 1,	
 2,	
 4	

4	
 1,	
 2,	
 3,	
 6	

5	
 6,	
 7,	
 8	

6	
 4,	
 5,	
 7	

7	
 5,	
 6,	
 8	

8	
 5,	
 7	

	

Assume	
 that,	
 in	
 a	
 traversal	
 of	
 G,	
 the	
 adjacent	
 vertices	
 of	
 a	
 given	
 vertex	
 are	
 returned	
 in	
 the	
 order	

above.	

a. Draw	
 G	

	

b. Give	
 the	
 sequence	
 of	
 vertices	
 of	
 G	
 visited	
 using	
 a	
 DFS	
 traversal	
 starting	
 at	
 vertex	
 1.	

{1,	
 2,	
 3,	
 4,	
 6,	
 5,	
 7,	
 8}	

c. Give	
 the	
 sequence	
 of	
 vertices	
 visited	
 using	
 a	
 BFS	
 traversal	
 starting	
 at	
 vertex	
 1.	

The	
 order	
 is	
 the	
 same	
 in	
 this	
 case:	
 	
 {1,	
 2,	
 3,	
 4,	
 6,	
 5,	
 7,	
 8}	

	

	

Assume that, in a traversal of G, the adjacent vertices of a given vertex are returned in the order above.

(a) Draw G.

(b) Give the sequence of vertices of G visited using a DFS traversal starting at vertex 1.

(c) Give the sequence of vertices visited using a BFS traversal starting at vertex 1.

4

